Hyperspectral retinal imaging for micro- and nanoplastics detection: a conceptual and methodological framework

Tan Aik Kah

Eye Clinic, Normah Medical Specialist Centre, Kuching, Sarawak, Malaysia

Appendix A. Detailed Phantom Recipe.

1. Protocol Sheet (100 mL batch scale)

A. Vitreous-equivalent gel (clear layer, 3–5 mm)

Ingredients

- 0.5 g low-melt agarose (0.5% w/v) ^{1,4}
- 1.0 mL Intralipid 20% (1% v/v final) ²
- Distilled water to 100 mL
- (Optional) 20 mg sodium azide (0.02% w/v) for preservation

Steps

- 1. Heat 90 mL deionized (DI) water to boiling, add agarose gradually. Stir until clear^{1,4}
- 2. Cool to 45°C.
- 3. Add 1.0 mL Intralipid and mix gently.^{2,3}
- 4. Top up to 100 mL with DI water.
- 5. Degas under vacuum (30–60 s).
- 6. Pour into mold, thickness 3–5 mm. Chill at 4°C for 30 min.

B. Retina-equivalent gel (scattering + absorbing layer, ~200–300 μm)

Ingredients

- 5.0 g gelatin (5% w/v) ^{3,5}
- 2.0 mL Intralipid 20% (2% v/v final; adjust 2–5%) ^{2,3}
- Hemoglobin solution (stock 10 g/L): 2 mL \rightarrow final 0.2 g/L ^{1,4}
- Melanin powder: 0.02 g (0.02% w/v) OR India ink: 20 µL ⁵
- Distilled water to 100 mL

Steps

- 1. Heat 80 mL DI water to 45 °C. Add gelatin, stir until dissolved ^{3,5}.
- 2. Add Intralipid, hemoglobin, and melanin/ink sequentially with gentle mixing ^{2,5}.
- 3. Adjust to 100 mL.
- 4. Degas under vacuum.
- 5. Cast thin films using glass spacers (200–300 μm). Chill at 4 °C until set (~20 min).
- 6. If embedding particles, pour half-thickness layer first, let semi-gel (~5 min at 25–30 °C), deposit particle suspension, then overlay with remaining warm phantom.

C. RPE/backing layer (absorbing)

Ingredients

- 1.5 g agarose (1.5% w/v) ^{1,4}
- 0.05 g melanin powder (0.05% w/v) OR 50 μ L India ink ⁵
- Distilled water to 100 mL

Steps

- 1. Dissolve agarose in 80 mL boiling DI water.
- 2. Cool to 45 °C, add pigment.
- 3. Adjust to 100 mL, mix.
- 4. Pour thin layer (50–100 μ m) at bottom of mold. Let set (~10 min).

Assembly (Figure 1)

- 1. Pour RPE layer in mold, set.
- 2. Add retina-equivalent layer (200–300 µm), embed particles if desired.
- 3. Overlay vitreous-equivalent layer (3–5 mm).
- 4. Chill complete phantom at 4 °C for 1 hr before imaging ^{1,5}.

Storage: Seal in airtight box at 4 °C. Stable for 1–2 weeks. Add sodium azide for longer storage.

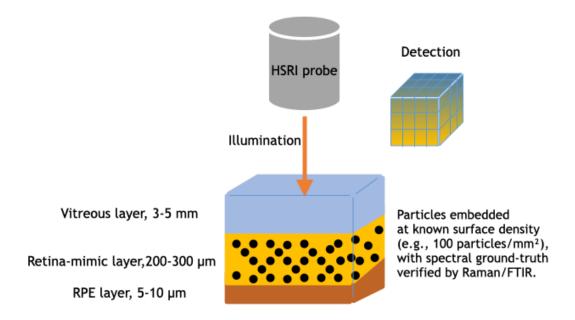


Figure 1. Schematic of multilayer phantom for HSRI validation. Three layers: vitreous-equivalent gel (3–5 mm, light blue), retina-mimic (200–300 μ m, pink-orange, with embedded particles), and RPE (50–100 μ m, dark brown). HSRI probe shown above with illumination and spectral detection. Particles embedded at known density (e.g., 100/mm²), validated by Raman/FTIR.

2. Worked Particle-Spiking Examples

Let's assume a stock suspension of 1 µm polystyrene beads at 10⁶ particles/mL.

- Desired surface density: **100 particles/mm²** over 1 cm² (100 mm²).
- Total needed = $100 \times 100 = 10,000$ particles.
- Stock = 10^6 particles/mL = 1,000 particles/ μ L.
- Required volume = $10,000 \div 1,000 = 10 \mu L$ pipetted evenly over 1 cm².

If using 100 nm nanoplastics at 10⁹ particles/mL:

- Same goal (10,000 particles over 1 cm²).
- Stock = 10^9 particles/mL = 1,000,000 particles/ μ L.
- Required volume = $10,000 \div 1,000,000 = 0.01 \mu L$ (impractical).
 - \rightarrow Dilute 1:1000 (to $10^6/\mu$ L = $1000/\mu$ L) and pipette **10 \muL**.

If using 10 µm beads at 10⁵ particles/mL:

- Stock = 100 particles/μL.
- Goal = 10,000 particles.
- Required volume = $100 \mu L$ onto $1 cm^2$ area.

Tip: Always sonicate suspensions 1–2 min before pipetting to avoid aggregation ^{3,5}.

References

- 1. Mustari A, Nishidate I, Wares MA, et al. Agarose-based tissue mimicking optical phantoms for diffuse reflectance spectroscopy. J Vis Exp 2018;138:57578.
- 2. Lepore M, Delfino I. Intralipid-based phantoms for the development of new optical diagnostic techniques. Open Biotechnol J 2019;13:163-72.
- 3. Ntombela L, Adeleye B, Chetty N. Low-cost fabrication of optical tissue phantoms for use in biomedical imaging. Heliyon 2020;6:e03602.
- 4. Kim M, Im S, Park I, et al. Fabrication of agar-based tissue- mimicking phantom for the technical evaluation of biomedical optical imaging systems. Curr Appl Phys 2024;61:80-5.
- 5. Stergar J, Hren R, Milanič M. Effects of phantom microstructure on their optical properties. J Biomed Opt 2024;29:093502.